
A procedural approach to stacking multi-oriented coloured objects
using basic geometry and heuristic-based algorithms

Daniel Chipping1, Mahmud Huseynov2, Chetan Kalsi3

Abstract— This paper covers the issues of object segmen-
tation, localisation and grasping of multi-oriented coloured
objects in an environment with obstacles. A series of three
tasks are defined of increasing generality, and a set of efficient
heuristic-based solutions are proposed. The pick and place
experiments are simulated in Gazebo on a Franka Emika Panda
arm using MoveIt!, OctoMap and the Point Cloud Library
to detect coloured cubes and stack by colour whilst avoiding
obstacles.

Simulation results show that we have been able to successfully
extract object colours and stack cuboid objects in correct
orientations. Finally, we show how this work lays foundation
for future approaches that optimise for time taken, grasping
of irregular objects and generalised reinforcement learning
policies.

I. INTRODUCTION

Object detection, localisation and manipulation are nec-
essary abilities for robots to be able to interact with the
world. Current research is looking at how robots can be of
assistance in daily tasks through independent completion and
through task collaboration. Tasks in the home environment
are complex due to the unstructured nature of how items
are kept. This involves being able to find objects that could
be obscured with obstacles, determine current and required
orientation and being able to correctly determine grasp po-
sitions for manipulation. Research has been undertaken that
tries to solve these complex issues through the development
of a robotic systems that can unload items from a dishwasher
and fetch specific objects via voice commands [1].

Within the industrial setting, robots are being looked at
to support conventional building techniques such as brick
laying [2]. They have the advantage of being able to lay
more bricks than a person can per day. To be able to
successfully complete these tasks, they have to be able to
correctly grasp each brick and stack them with the correct
alignment and orientation. For increasing productivity within
industry, robotic systems are well placed to be able to carry
out monotonous pick and place tasks with accuracy and
speed.

Robots that are already used in warehouses for pick
and place problems are designed for very specific tasks
in a particular environment. There is a huge challenge in
developing inexpensive robotic systems that have the ability
to grasp different products in changing environments [3].

This paper presents 3 simulation tasks that build on each
to solve a pick and place problem of finding and stacking

Department of Computer Science, University College London,
Gower Street, WC1E 6BT, UK. 1ucabdc4@ucl.ac.uk,
2ucabmh5@ucl.ac.uk, 3zcecf50@ucl.ac.uk

multicoloured cubes in a precise colour order. This is done
through the use of the Point Cloud Library (PCL) and storage
of cube RGB colour data, co-ordinates and orientation. The
cubes in question are of both uniform size and shape. The
solution is evaluated via simulation using Gazebo.

II. RELATED WORK

Successful object manipulation is a central skill that allows
robots to carry out complex tasks. Lozano-Perez et al. [4] at
MIT developed the Handey robotics system. The team broke
down the pick and place problem into the following inter
dependant steps:

• Choose a grasp on object
• Plan motion to grasp object
• Plan motion to new object location
• Plan motion to extract gripper

Visual perception is an import component that allows a
robot to carry out the steps of a pick and place problem.
Building a map of the environment allows the robotic system
to detect target objects and obstacles to allow for path
planning. Point Cloud Library (PCL) is an open source 3D
image processing library which allows for building a detailed
map of the environment. It allows for point cloud filtering,
feature extraction, geometric registration, reconstruction, seg-
mentation and model fitting. It has now ”become the standard
for unorganised point cloud processing among robotisicst”
[5].

For vision systems, correct camera calibrations are es-
sential to create accurate point clouds. Calibration feature
templates are used [6] along with camera models like Tsai’s
model [7] to achieve required accuracy.

Obstacle avoidance is another important part of motion
planning. Pick and place operations have a typical feature
of smooth trajectories. Hyperbolic type trajectories have
been suggested for robotic arm manipulators as a means of
obstacle avoidance. [8]

Kabutan et al. [9] have developed a ”robotic intelligent
space (RIS)” sensor through the use of Kinect devices (RGB-
D cameras), that can obtain point cloud data. The cameras
are not attached to the robot arms but are instead located
around the robot work space preventing occlusions. Point
cloud data is collected from multiple Kinect devices and
merged for object detection. A payoff is required between
point cloud density and number of Kinect devices to reduce
merge computational time. Object detection steps from point
cloud data is as follows:

• Extract Euclidean clusters from point cloud data.



• Project 3D point cloud data set to 2D x-y plane.
• Reduce point cloud dimensions to determine convex

hull.
• Search minimum bounding rectangle.
• Obtain rotation and center of gravity.
• Determine 3D space bounding box.

Motion planning is carried out through the creation of a
3D occupancy grid map for obstacle avoidance. Kabutan et
al. [9] modelled their system using ”MoveIt!”. Their exper-
iments resulted in a 83% success rate, with most failures
occurring due to errors in motion planning. For successful
motion planning three dimensional models of the environ-
ment are required. Point clouds are not memory efficient
due to to the storage of large number of measurement points.
Cloud points also do not differentiate between what areas are
obstacle free or unmapped [10]. A common approach that
overcomes these issues concerning point clouds is through
the use of the OctoMap framework as described by Hornung
et al. [10] which uses a tree based representation of the
mapped area. Occupancy is estimated through probabilistic
means. It works through the use of a hierarchical data
structure known as an octree that represents cubic volumes
of space that are called voxels. The fact that a probabilistic
model is used to determine occupancy, sensor noise can be
dealt with and sensor fusion can also be carried out.

Within the pick and place problem, the task of grasping is
a significant area of research. Of particular issue is grasping
novel objects and grasping in cluttered environments. For
novel objects, grasping poses have been determined with the
use of synthetic data and deep neural networks [11]. Systems
have been developed to improve the speed of determining
grasp positions through the use of two-step cascade deep
learning systems [12].

For grasping in cluttered environments, many methods
have been suggested and tested. For example Zeng et al. [13]
employ ”object-agnostic grasping” which isolates objects
from clutter and then try to recognise the object. Jiang et
al. employ a system that rearranges and pushes objects out
of the way to recognise a grasp target amongst the clutter.

Lobbezoo et al. [14] carried out a review of pick and
place operations in robotics specifically with regards to
reinforcement learning and provided a detailed summary
table of 22 papers that have looked into this. Reinforcement
learning ”is becoming a popular alternative to task-specific
programming” to allow robotic operations to take place in
a less constrained manner [14]. They highlight that pick-
and-pace implementations differ drastically and there is no
industry standard. All the key tasks involved in pick and
place are brought together as shown in Fig. 1.

III. PROBLEM STATEMENT AND HYPOTHESES
The overall goal is to generate a solution to a simulated

pick-and-place problem using the the Fraka Emika Panda 7
DoF manipulator. This problem involves colour detection,
grasping, orientating and stacking while avoiding obstacles.
The task is broken down into 3 sections that build on
each other. The environment is simulated in Gazebo and

Fig. 1: Pick and Place System Flowchart [3]

MoveIt! to carry out motion planning, manipulation, inverse
kinematics, control, 3D perception and collision checking.
For 3D perception, Point Cloud Library and OctoMap are
used. Fig. 3 shows the simulation environment for each task.

As mentioned previously, camera calibration is crucial for
accuracy of 3D perception via point cloud data. Within our
simulation we can use the knowledge that the cube objects
are 4cm in length to confirm if there are any inconsistencies
with the point cloud data. Fig. 2 demonstrates how this is
done, by allowing the robot arm to get close to a cube form
overhead.

Fig. 2: Cube hypotenuse verification

H =

√
(x of ymax − xmin)

2 +(ymax − y of xmin)
2 (1)

θ = cos−1((x of ymax − xmin)/H) (2)



(a) Task 1

(b) Task 2

(c) Task 3

Fig. 3: Task Simulation Environments

The hypotenuse is verified by equation 1. If there were
no point cloud precision errors, the hypotenuse would read
as 4cm. If there is any error, this hypotenuse value will be
scaled accordingly with the point cloud data.

IV. PROPOSED TECHNICAL SOLUTION

The proposed solutions for the simulation experiment is
discussed in more detail in the following subsections:

A. Task 1

The first task involves detecting and localising a stack
multicoloured cubes. To solve this initial problem, the task
is broken down into the steps presented in Algorithm 1.

Algorithm 1 Colour Observation (Task 1)

1) Look at scene using RGB-D camera via the scoutFront
function.

2) Localise x,y co-ordinates of stack with examineTop
function.

3) Move robotic arm closer to stack to improve point
cloud resolution.

4) Find orientation of stack of cubes using trigonometric
function and correct for resolution errors.

5) Rotate robotic arm 90deg to stack.
6) Segment point cloud based on colour.
7) Record RGB values of each cube at each cube mid-

point.

B. Task 2

The second task involves building a stack of objects in a
specified colour order. The proposed solution is presented as
Algorithm 2.

Algorithm 2 Building a Colour Ordered Stack (Task 2)

1) Define stack build location (taken from request)
2) Look at scene from top using RGB-D camera via the

scoutFront function and segment out ground plane.
3) Confirm requested stacking space is clear on the x,y

co-ordinates.
4) If not clear, grasp cubes in stacking location and move

to free space.
5) Localise co-ordinates of cubes, centroids, orientation

and colour. Save in vector.
6) If colour of cube matches colour request, execute pick

and place function.
7) Define grasp via cube centoid and orientation.
8) Grasp cube.
9) Move cube to the requested orientation and location.

10) Repeat steps 6-9 until stacking is complete.

C. Task 3

The third task combines tasks 1 and 2, where a stack of
objects need to be detected and localised. Then an identical
stack needs to be built using objects in the simulation
environment while avoiding stacked obstacles (shown in Fig.
3c as black stacks).

V. EVALUATION

A. Task 1

Simulations demonstrate that the RGB value colours of
each cube in a stack were successfully identified and saved.

In carrying out simulations of Task 1, it was found that
the segmented point cloud data did not show the cubes in
high resolution and colours were found to bleed between
the cubes. This could then result in a incorrect RGB value
being recorded for the cube. To overcome this issue, the
RGB data was collected from the center of the cubes on the
side face at specific heights as shown in Fig. 4. This was



Algorithm 3 Building a Colour Ordered Stack with Obsta-
cles in the Environment (Task 3)

1) Look at scene using RGB-D camera and segment out
ground plane.

2) Localise x,y co-ordinates, centroids and colours of
objects in the environment - Save to vector.

3) Loop through vector and find black cubes/stacks (RGB
0.1, 0.1, 0.1)

4) Assign black cubes as obstacles in the environment.
5) Move robot arm 90deg to side of coloured stack.
6) Record RGB values of each cube at each cube mid-

point from bottom to top.
7) From Task 3 service request, determine location and

orientation of new stack.
8) Confirm stacking location is clear and if not move

objects that are in the way.
9) Move required colour cubes to the requested orienta-

tion and location using OctoMap occupancy grid to
avoid obstacle stacks.

10) Continue to repeat steps 9 until stacking has been
completed.

the location where the cube colours were not impacted by
the adjacent objects. This method also overcame the issue of
edge cases where cubes adjacent to each other are the same
colour. By using specific heights to define the recording of
the RGB values, the results are robust in ensuring a cube
is not potentially missed due to being the same colour as
neighbouring cube.

Fig. 4: Task 1 setup with data on cube heights to determine
RGB values. (Height values in cm)

B. Task 2

We were able to demonstrate the stacking of coloured
blocks through simulation with minimal deviations in cen-

tering and orientation. Speed was an issue when carrying out
task 2. The problem was setup to analyse and save data on
all the cubes in the scene irrespective of their requirement
to be stacked. This resulted in increased processing times
and data storage of objects that wouldn’t necessarily need to
be grasped or moved. This task could have been improved
by filtering the objects by colour as per the stack building
requirement. All other objects can then be ignored if not in
the way of the stacking task.

C. Task 3

Task 3 was implemented as highlighted in section IV,
which combined the elements of Task 1 and 2. It ran into
similar speed issues as seen in the implementation of Task
2, so object filtering by colour is something that should
be considered for further improvements. Through the use
of OctoMap, the occupancy grid and its integration with
MoveIt!, path planning amongst obstacles was successful. A
key performance indicator that will be useful to determine
effectiveness of implementation is the speed and success rate
of completing this task. This could be compared to task
performance when using hyperbolic trajectories for obstacle
avoidance and path planning as described in section II [8].

Further optimisation would be through the determination
of the ideal voxel grid size. This is defined in the code
by the variable ’g vg leaf size’. Decreasing the size, would
increase the resolution of the environment occupancy grid.
This should reduce task failures but at a cost of increased
computational time.

VI. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated how colour data can be
extracted from objects, how objects can be grasped, ma-
nipulated and stacked while navigating an obstacle filled
environment. Point Cloud Library (PCL) and the OctoMap
framework are powerful tools in allowing a robot to extract
information and understand its environment. This is impor-
tant as robotic systems are being developed to carry out tasks
in less structured environments like a home or construction
site. Camera calibrations are essential to confirm what a robot
sees and maps matches reality, especially if it is required to
manipulate small objects or navigate with high precision.

The task of stacking cubes by colour has been outlined
and tested via simulation. Future development of this task
includes trying to improve the speed of task completion and
find efficiencies as described in section V.

Liu et al. [15] have developed a system that can stack
irregular shaped stones. This problem carries greater task
complexity as a stable pose needs to be determined for each
object. Our work could be used as a foundation to deal with
irregular shaped objects.

The implementation of a reinforcement learning approach
would be another research area to build on, since it is
considered that reinforcement learning ”has the potential to
replace traditional robotic control” [14] and improve task
generalisation [3]. This would open up the robotic system to
being more flexible to working in different environments.



REFERENCES

[1] A. Saxena, L. Wong, M. Quigley, and A. Y. Ng, “A vision-based
system for grasping novel objects,”,” 2007.

[2] R. Bogue, “What are the prospects for robots in the construction
industry?” Industrial Robot: An International Journal, vol. 45, 12
2017.

[3] P.-C. Huang and A. K. Mok, “A case study of cyber-physical system
design: Autonomous pick-and-place robot,” in 2018 IEEE 24th Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2018, pp. 22–31.

[4] T. Lozano-Perez, J. Jones, E. Mazer, and P. O’Donnell, “Task-level
planning of pick-and-place robot motions,” Computer, vol. 22, no. 3,
pp. 21–29, 1989.

[5] K. Zampogiannis, C. Fermuller, and Y. Aloimonos, “cilantro,”
in Proceedings of the 26th ACM international conference on
Multimedia. ACM, oct 2018. [Online]. Available: https://doi.org/10.
1145%2F3240508.3243655

[6] A. Sbnchez and J. Martinez, “Robot-arm pick and place behavior
programming system using visual perception,” in Proceedings 15th
International Conference on Pattern Recognition. ICPR-2000, vol. 4,
2000, pp. 507–510 vol.4.

[7] R. Y. Tsai, “An efficient and accurate camera calibration technique fro
3d machine vision,” in CVPR’86, 1986.

[8] C. Muller-Karger, A. Leonell Granados Mirena, and J. Scarpati Lopez,
“Hyperbolic trajectories for pick-and-place operations to elude obsta-
cles,” IEEE Transactions on Robotics and Automation, vol. 16, no. 3,
pp. 294–300, 2000.

[9] R. Kabutan, R. Tanaka, S. Oomori, M. Morita, E. Inohira, K. Yoshida,
H. OHTAKE, and T. NISHIDA, “Development of robotic intelligent
space using multiple rgb-d cameras for industrial robots,” in Proc. of
ICT-ROBOT, ThBT3. 2, 2016.

[10] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: An efficient probabilistic 3d mapping framework based on
octrees,” Autonomous Robots, vol. 34, 04 2013.

[11] A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A large
scale dataset for robotic grasp detection,” 2018. [Online]. Available:
https://arxiv.org/abs/1803.11469

[12] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting
robotic grasps,” The International Journal of Robotics Research,
vol. 34, no. 4-5, pp. 705–724, 2015. [Online]. Available: https:
//doi.org/10.1177/0278364914549607

[13] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza,
D. Ma, O. Taylor, M. Liu, E. Romo, N. Fazeli, F. Alet, N. C. Dafle,
R. Holladay, I. Morena, P. Qu Nair, D. Green, I. Taylor, W. Liu,
T. Funkhouser, and A. Rodriguez, “Robotic pick-and-place of novel
objects in clutter with multi-affordance grasping and cross-domain
image matching,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), 2018, pp. 3750–3757.

[14] A. Lobbezoo, Y. Qian, and H.-J. Kwon, “Reinforcement learning for
pick and place operations in robotics: A survey,” Robotics, vol. 10,
no. 3, 2021. [Online]. Available: https://www.mdpi.com/2218-6581/
10/3/105

[15] Y. Liu, J. Choi, and N. Napp, “Planning for robotic dry stacking
with irregular stones,” in Field and Service Robotics, G. Ishigami and
K. Yoshida, Eds. Singapore: Springer Singapore, 2021, pp. 321–335.


